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Here is a more detailed proof of Proposition 3.3 in your text.

Proposition 3.3: Suppose that a0.a1a2a3 . . . and b0.b1b2b3 . . . are two different decimal expressions of the same real
number. Then one of these expressions ends in 9999 . . . and the other ends in 0000 . . ..

Proof. The purpose of this proof is to show that really the only way that two decimal expressions of a number can
ever be equal is if to have one of the expressions ending in repeating 9’s, and the other ending in repeating 0’s.
What we are going to do is try to take some decimal expressions of these forms and show that this is indeed what
we get.

Let x ∈ R, and take two decimal expressions x = a0.a1a2a3 . . . and x = b0.b1b2b3 . . .. Without loss of generality, let’s
first suppose that a0 = b0 = 0. This is only a matter of convenience, since we know the decimal expression of any
real number may be written,

x =
∞∑
i=0

ai
10i

=
a0
100

+
a1
101

+
a2
102

+ · · ·

so we can always just add in any a0 we want to get any other number we care about. As we have claimed that x
has the decimal expressions, then x = a0.a1a2a3 . . .x = b0.b1b2b3 . . ..

Since we are assuming that the decimal exprssions are different, we know that at some decimal index the terms
of the decimal expression are going to be different. Let’s take that index to be k; that is, the decimal expressions
agree for the terms up to and including i = k − 1, and differ at i = k. Mathematically, this is,

0.a1a2a3 . . . ak−1ak . . . = 0.a1a2a3 . . . ak−1bk . . .

Notice that we have replaced the b1, . . . ,bk−1 with the a1, . . . , ak−1, since we have assumed they agree.

Now, as is done in the text, we take that ak > bk - this is our own choice, we could also take ak < bk . Since the terms
of the decimal expressions can only be integers from 0 to 9, we have immediately that ak ≥ bk +1 - the ak must be
at least one bigger than the bk term!

Now, we will truncate or cut-off the decimal expression of x in the a’s and the b’s. That is, we will go up to our
point of interest, index i = k, and then change the terms of the decimal expression appearing after that to get an
inequality we can deal with. So,

x ≥ 0.a1a2a3 . . . ak−1ak0000 . . . (1)

x is greater here than this decimal expression because we are making all the ai , i > k 0, which will be less than
the actual terms appearing in the decimal expression of x. We choose the 0’s here because they are the smallest
numbers we can take (this is why that is one of the decimal expressions we recover in the statement of the theorem).
Conversely, we will make the b’s expression bigger (or equal to),

x ≤ 0.a1a2a3 . . . ak−1bk9999 . . . .

Just like we did with the ak , we set all the terms appearing after bk to be 9’s because that is the biggest number
we can take for each position, necessarily making it greater than or equal to the correct decimal expression for x.
Together we have,

0.a1a2a3 . . . ak−1ak0000 . . . ≤ x ≤ 0.a1a2a3 . . . ak−1bk9999 . . .
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Now here is the part that may be confusing. We are going to use the fact that 0.9999 . . . = 1, just shifted down
further in the decimal expression; that is 0.00009999 . . . = 0.00001000 . . .. In the context of this proof, this translates
to

x ≤ 0.a1a2a3k−1bk9999 . . . = 0.a1a2a3 . . . ak−1(bk +1)000 . . . (2)

Therefore, by looking at the decimal expression in equation (1) and comparing it to the second part of the expres-
sion in equation (2), we have ak = bk +1. Therefore,

x = 0.a1a2a3 . . . ak000 . . . = 0.a1a2a3 . . . ak−1(ak − 1)999 . . . .

Thus, one decimal expression ends in repeating 9’s, and the other ends in repeating 0’s.
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